|
Investigation of Applying Gas Counter Pressure (GCP) Technology in Improving Metal Injection Molding Flow Characteristics and Molded Part’s Quality
Metal Injection Molding (MIM) is a combination between injection molding and powder metallurgy process. The process bolsters a mass-production manufacturing of small, complex, precise parts as a molded part undergoes de-binding and sintering stages right after the molding one. Most of the MIM studies focus on how to treat the feedstock while to control the distribution of powder concentration and density through the process settings, for example, melt temperature, mold temperature, and injection speed is still less discovered. Therefore, this study investigates the effects of those settings on flow characteristics and molded part’s quality which focuses on the green part. Moreover, Gas Counter Pressure (GCP) technology is carried out to improve the process. Numerical approach along with SEM analysis is also conducted for verification, and the results exhibit that an anisotropic behavior occurs in experiment with different temperature and speed settings. In addition, both experiment and simulation have demonstrated that GCP implementation can improve both process and part’s quality; the shear stress is reduced up to 98.49%, and the density can be increased up to 1.43% in experiment and 0.01% in simulation.
|